APPLICATION OF FUNGITELL IN FUNGAL CHORIORETINITIS AND ENDOPHTHALMITIS

EVALUATION OF THE UTILITY OF SERUM (1→3)-β-GLUCAN IN THE DIAGNOSTIC WORK-UP FOR FUNGAL CHORIORETINITIS AND ENDOPHTHALMITIS: A RECENT CASE SERIES

Fungitell® Bulletins are intended as technical advisory communications and as such are disseminated to the general public in order to highlight the significance of (1→3)-β-D-Glucan on human health. These communications do not promote a specific drug, therapy nor make any representation or suggestion concerning the suitability or effectiveness of a particular drug or therapy in patients harboring (1→3)-β-D-Glucan. Fungitell® is an adjunct diagnostic assay to be utilized in conjunction with clinical signs and symptoms for the diagnosis of invasive fungal infection. Fungitell® is currently 510(k) cleared for the detection and quantification of (1→3)-β-D-Glucan in human serum and should be used and interpreted only in a manner consistent with the current Instructions for Use.

Discussion:

Invasive fungal infections (IFI) are often difficult to diagnose due to non-specific symptoms and the lack of sensitivity of conventional diagnostics, including the still gold standard, culture-based methods.1,2,3 A particularly challenging subset of IFI is comprised by fungal chorioretinitis and endophthalmitis. In the former, a fungal infectious process is found in the tissues of the uveal tract; the choroid, the ciliary body, and the iris. In the latter it is present in the intraocular fluids; the vitreous and aqueous. Aspergillus sp. and Candida albicans are common causes of fungal chorioretinitis and endophthalmitis.4,5,6 Typically, hematogenous spread of the infectious organisms from another infection site is responsible for the dissemination to the ocular tissues and fluids. Ophthalmological evaluation of candidemic patients is recommended in order to assess possible ocular infection in the setting of candidemia.7,8 Sensitivity of blood culture in fungal endophthalmitis has been reported to be low.9

In recent years, non-culture-based diagnostic tests have improved the diagnosis of IFI and, importantly, contributed to anti-fungal stewardship though high negative predictive value (NPV).10 These include (1→3)-β-D-glucan (BDG), a cell wall component of the vast majority of pathogenic fungi. Serum BDG titer analysis has been widely used in both fungemia and in more focal invasive fungal disease and is the subject of an extensive literature. The application of (1→3)-β-d-glucan detection of fungal chorioretinitis and endophthalmitis and to fungal keratitis has been much more limited and case report-based and the field has been in need of larger studies.11

Recently, Ammar et al.,12 have published the results of a retrospective case-controlled study involving 88 patients. Ten were established to have either chorioretinitis (N=6) or endophthalmitis (N=4) and fungal infection by culture (blood, N=9; vitreous, N=1). 78 patients were established as controls based upon negative eye examination, regardless of BDG or culture result. Diagnostic performance was assessed using a positive serum cutoff of 80 pg/mL. The sensitivity results for chorioretinitis and endophthalmitis were 66.7% (95% CI: 22.3%–95.7%) and 100% (95% CI: 39.8%–100%), respectively. Specificity for the presence of either condition was 74.4% (95% CI: 63.2%–83.6%). In chorioretinitis, positive predictive value for prevalence of 1% and 5% were
calculated as 2.1 and 12.6 %, respectively. Negative predictive value for 1 and 5% prevalence was calculated as 99.5% and 97.7%, respectively. In fungal endophthalmitis, positive predictive value for prevalence of 1% and 5% were calculated as 3.8 and 17.1 %, respectively. Negative predictive value for 1 and 5% prevalence was calculated as 100%, for both.

The authors noted that potential utility of a serum BDG test lay as an adjunctive test, into be considered in the context of clinical suspicion of ocular fungal disease, as well as host and clinical factors. The fact that a test result of high NPV may be obtained relatively rapidly compared to culture results of limited sensitivity was considered as potentially drug-exposure-sparing. The limitations of the study included a relatively small number of positive cases and its retrospective nature. However, the results were indicated to warrant larger evaluations of clinical utility.

The issue of speed of result may be problematic for institutions which utilize external laboratories for BDG analysis. This issue has been resolved with the introduction of the Fungitell STAT™, a new BDG measurement product from Associates of Cape Cod, Inc. which permits BDG analysis of a single patient test in an hour. Additional information concerning the Fungitell STAT™ may be found at www.fungitell.com.

Discussion References:
2. Mark P. Breazzano, MD; H. Russell Day Jr, BS; Karen C. Bloch, MD; Sarah Tanaka, MD; Edward F. Cherney, MD; Paul Sternberg Jr, MD; Sean P. Donahue, MD, PhD; John B. Bond III, MD. Utility of Ophthalmologic Screening for Patients With Candida Bloodstream Infections. A Systematic Review JAMA Ophthalmol. 2019;137(6):698-710.